Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

Strategies for Designing with Integrated Lighting and Acoustic Solutions

This course will review the importance of acoustics in architecture, discuss the fundamental principles of sound management, explore how to design interior spaces to maximize occupants’ comfort, and review emerging tools to solve for both sound and lighting. It will also focus on the standards that govern acoustic requirements for diverse applications.

...Read More

Lighting Overview for Healthcare Facilities

 The class is a high-density orientation to lighting considerations and methods in the healthcare environment. Topics will include application situations, impacted populations, design methods, and a review and critique of examples of successful and less-than-successful healthcare lighting designs.

At the end of this course, participants will:

  1. Identify current trends in the healthcare lighting design and the impact lighting has on its occupants and the environment. 
  2. Identify who is impacted by our lighting design decisions and learn best practices on how to light the spaces they occupy.
  3. Identify specific lighting needs of patient rooms.
  4. Identify emerging lighting methods including design for circadian health.
...Read More

Wood Without Guilt: Steel Cladding That Perfectly Mimics Real Wood.

This course will describe the aesthetic and biophilic benefits, as well as the objective sustainability standards achieved by innovative metal wall materials that mimic wood. The course will describe how the materials provide both physical and emotional comfort to occupants, protection from harsh weather, and the community benefits of sustainable construction. A variety of applications are also detailed in case studies of actual projects.

Learning Objective 1:
The student will understand how and why the use of materials that mimic but outperform natural materials is highly desirable.

Learning Objective 2:
The student will be able to explain the technologies applied to materials and methods of construction that mimic wood in order to improve sustainability and resist environmental attack.

Learning Objective 3:
The student will recognize the favorability of these materials and methods of construction through a recitation of their achievements in testing and evaluation, how they meet construction standards, and what contributions they make to LEED v4.

Learning Objective 4:
The student will become familiar with a variety of existing projects that demonstrate successful adoption of these products and methods.

...Read More

Improving Water Conservation in High-Performance Buildings

This course recognizes the flush toilet as one of the biggest users of water and discusses how toilet design is pushing flush technology to develop ways for homes and commercial buildings to conserve water without sacrificing the performance of the toilet. Industry testing protocols and the water-saving capabilities of different technologies are evaluated. Today—as climate change, population growth, and record droughts present an unprecedented strain on our water supply—conservation technology is building awareness to the importance of having the most water-efficient fixtures in a home or business.

...Read More

Designing Beautiful High-Performance Building Envelopes

The building envelope has a lot of different jobs to do—from insulating the building so that it can be efficiently heated and cooled to providing air and water barriers that keep harmful moisture at bay, as well as providing the aesthetic face of the project. High performance building envelopes do all of those things extremely well. This article explores some of the latest high-performance solutions that can be used to create those high-performance envelopes.

HSW Justification:
A high-performance building envelope is necessary to create a building that is efficient and healthy. This article takes a look at how different components in the building envelope perform—giving architects the information they need to choose high-performance components that will produce a high-performing envelope.

Learning Objective 1:
Compare different types of continuous insulation in terms of the thermal performance they offer and the way they behave when exposed to water and fire.

Learning Objective 2:
Describe how insulated metal panels (IMPs) can be used on the envelope to improve building performance, create efficient and healthy interiors, and enhance design flexibility.

Learning Objective 3:
Explain how PET bottles can be upcycled into insulation creating a new product that contains recycled material and improves thermal performance of the building envelope.

Learning Objective 4:
Describe the ways that architectural metal wall systems enable architects to push the creative boundaries of their designs.

...Read More

Leveraging Advances in Parametric Design & Digital Fabrication in Architecture

This course will explore the cutting-edge union of design and technology by delving into parametric design and its symbiosis with digital fabrication, and how the vision is best achieved via vertically-integrated, technology-forward product manufacturers. We will also discuss strategies for effective collaboration with these manufacturers throughout the architectural design process.

Learning Objective 1: Students will learn about the use of parametric design in architecture, including its definition, history and current state.

Learning Objective 2: Students will learn about the marriage between parametric design and digital fabrication.

Learning Objective 3: Students will understand why vertical integration is an important operating model for product manufacturers looking to leverage parametric design.

Learning Objective 4: Students will understand how to partner with vertical manufacturers throughout the architectural design process and learn the advantages of this digital collaborative approach.

...Read More

Customizable Acoustical Solutions for Open Plenum Design

Modern open spaces create a unique set of challenges when it comes to acoustics, particularly because many new buildings are designed with open plans and open plenums. Fortunately, there are innovative acoustic systems on the market that are designed to integrate with open plenums that can help to overcome these challenges. This course will discuss customizable acoustical solutions for open plenum design, including baffles, beams, clouds, and acoustical wall panels, which are available in a variety of materials like metal, wood, fiberglass, and felt. The course will explore the importance of acoustical design and how these open plenum ceiling systems can transform a space aesthetically while maximizing acoustics.

...Read More

An Introduction to Custom Balanced Doors

This course will introduce you to the custom balanced door. You will learn about the system components and the differences between a Balanced door and a conventional hinged or pivoted swing door. Then we'll take a closer look at how a balanced door works in an installation. Finally you'll learn about the specific engineering requirements needed to accommodate balanced doors.

HSW Justification:
Balanced doors are safer than conventional doors because they require a smaller interference zone on the sidewalk. Also, they open with ease which benefits smaller people, weak or disabled persons, and the elderly. The majority of this course deals with those benefits and with the mechanical features of the door that make these health and safety benefits possible.

Learning Objective 1:
Understand the differences between the balanced door and a conventional hinged or pivoted swing door

Learning Objective 2:
Know specific requirements for ADA handicap guidelines LO 5: Understand how the balanced door interfaces with power operation LO 6: Understand specific engineering requirements to accommodate balanced doors

Learning Objective 3:
Understand what components make up a typical balanced door system

Learning Objective 4:
Know how the design concept works in an actual installation

...Read More

Design Building Envelopes That Support Healthy, Efficient Buildings

The building envelope separates the conditioned interior space from the environmental elements of the great outdoors, and this course explores a few solutions to equip the building envelope to defend the interior from nature's onslaughts, manage moisture, improve thermal performance, and admit daylight without glare.

HSW Justification:
Improper use of vapor barriers is one of the leading causes of moisture-related issues in buildings today. Those moisture related issues can include the growth of mold and mildew, which compromises the quality of the indoor environment and can even cause structural damage. Designing a proper air barrier system is crucial to moisture protection and protecting the thermal performance of the original design. This article provides best practices for designing an air barrier system that will function properly. We also discuss some solutions that can improve the functionality of the building envelope’s thermal performance. The course explores a translucent and an opaque solution that improve the thermal performance of the envelope, while offering additional benefits. Translucent wall panels allow diffuse, glare-free daylight into an interior, without compromising thermal efficiency at the opening and precast structural panels offer code-exceeding thermal performance and structural load-bearing capabilities.

Learning Objective 1:
Students will be able to explain why controlling air leakage in the building envelope is crucial to safeguarding the quality of the interior environment and protecting the energy efficiency of the building.

Learning Objective 2:
Students will learn to apply best practices to design an air barrier system that will effectively manage moisture intrusion and avoid moisture-related issues in the building envelope.

Learning Objective 3:
Students will be able to describe how translucent daylight panels allow daylight into the interior, mitigate glare and provide better thermal performance than many other glazing solutions.

Learning Objective 4:
Students will learn to use structural precast concrete panels to reduce the amount of perimeter steel needed on a project, while achieving and exceeding code-compliant thermal performance.

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×